avatar
Articles
113
Tags
82
Categories
14

Home
Archives
Tags
Categories
About
odymit's blog
Search
Home
Archives
Tags
Categories
About

odymit's blog

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning
Created2023-09-27|papersabstract
notes of Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning. Problem Statement (big background)Model compression is an essential technique for depolying model on power and memory-constrained resources. (problem statement)Existing method often rely on human expertise and focus on parameters’ local importance, ignoring the rich topology information within DNNs. Main Idea In this paper, author propose a novel multi-stage graph embedding technique based on gr ...
centos volume management
Created2023-09-27|techniquesvolume management
12345678910111213141516lsblk vgextend centos /dev/sdbvgremove datavgextend centos /dev/sdbvgextend centos /dev/sdclsblklvcreate -l +100%FREE -n home centoslsblk mkfs.ext4 /dev/centos/home rm -rf /mnt/tmp/mkdir /mnt/tmpmount /dev/centos/home /mnt/tmp/cp -aR /home/ /mnt/tmp/umount /dev/centos/homevim /etc/fstab mount -a
OpenBackdoor: A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks
Created2023-03-16|papersabstract
Reading notes about OpenBackdoor. Abstract This paper focus on textual backdoor attacks, which highlights two issues in privious backdoor learning evaluations: real-wolrd scenarios differs evaluation ignore that poisoned samples’ stealthy and semantic-preserving Contribution: categorize existing scenarios new stealthy and semantic-preserving metrics
BACKDOORBOX: A PYTHON TOOLBOX FOR BACKDOOR LEARNIN
Created2023-03-13|papersabstract
Contribution analysis of BackdoorBox. Main contribution GOAL: To facilitate the research and development of more secure training schemes and defenses. There are four main characteristic of the BackdoorBox. Toolbox characteristics Consistency: reimplement all methods in a unified manner. Simplicity: provide code example explain how to use them, and with necessary code comments. Flexibility: gain main components easily, such as poisoned dataset, implemented attaks and defenses. Co-development: o ...
BackdoorBench: A Comprehensive Benchmark of Backdoor Learning
Created2023-03-12|papersabstract
Contribution analysis of BackdoorBench. Main contribution GOAL: Aim to alleviate the dilemma - evaluations of new methods are often unthorough to verify their claims and accurate performance. Open-sourced toolbox. 8000 comprehensive evaluations. Thorough analysis and new findings. Comprehensive evaluations The paper provide evaluations of all pairs of 8 attacks against 9 defense methods, with 5 poisoning ratios, based on 4 datasets and 5 models, up to 8,000 pairs of evaluations in total. Com ...
TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural Backdoors
Created2023-03-12|papersabstract
Contribution analysis of TrojanZoo. Summary in a word Aim to bridge the gap the current situation: the lack of evaluation on exsiting attacks and defenses. The first open-source platform for evaluating neural backdoor attacks/defenses in a unified, holistic, and practical manner. Main contribution Open-source framework, includes attacks, defenses and plenty of evaluation metrics. Systematic study on existing attaks/defenses, and unveiling their complex design spectrum. Further explored existi ...
Adversarial Robustness Toolbox
Created2023-03-12|papersabstract
Contribution analysis of adverarial robustness toolbox. Summary in a word Adversarial Robustness Toolbox (ART) is Python library providing tools to build and deploy defences and test defences with adversarial attack. It includes state-of-the-art attacks, defences, evaluation metrics and other useful tools. The architecture of ART: Conclusion It’s a tool framework with attacks, defences and evaluation integrated.
Spectral Signatures in Backdoor Attacks
Created2022-08-24|papersabstract
Spectral Signatures in Backdoor Attacks abstract。 Summary 本文的贡献是证明了后门攻击的一个新的属性:频谱特征(spectral signature),具体来说,后门攻击会在频谱特征上留下可以被检测到的特征,通过该特征可以识别和过滤误标签输入。 还提供了一些关于后门相关的理解,为什么我们期望过参数化的神经网络会自然地嵌入后门,为什么这通常会导致后门攻击在频谱上留下特征。 嵌入表示的频谱特征 我们频谱特征的概念来自于最近鲁棒性统计相关工具的启发。当给定标签的训练集中包含后门样本时,该标签的训练样本由两个子集组成。其中: 大部分是干净的数据 小部分是误标签的后门样本 鲁棒性统计攻击表明,如果两个子集的均值相对于总体的方差充分分离,则可以奇异值分解来检测和删除损坏的数据点。 一个简单的尝试是直接在数据输入向量上应用该工具,但是如下图所示,数据集中的高方差意味着总体没有足够分离,无法使这些方法发挥作用。 但同时,上图也显示,在表示特征层级,数据集中两个子集确实分离了。直观来说,分类器的任何特征表示都倾向于增强后门信号,因为后门本身 ...
HOW POWERFUL ARE GRAPH NEURAL NETWORKS?
Created2022-08-04|papersabstract
HOW POWERFUL ARE GRAPH NEURAL NETWORKS? abstract。 Summary GNN 作为一种有效的图表示学习框架近年来越来越受到人们的重视,通常来说,GNN 通过在相邻节点间迭代传播和聚合特征。许多 GNN 的变体也获得了 sota 结果,不论是在节点分类任务还是图分类任务中。 但是,尽管 GNNs 革命化地改变了图表示学习领域,但是对齐表示特征和局限性的理解仍然很有限。 因此,我们提出了一种理论框架,来分析 GNNs 学习不同图结构的能力。 主要的贡献如下: 展示了 GNNs 在区分图结构方面极限性能是能够与 WL test 媲美的(GNNs are at most as powerful the WL test) 测试并获得了 GNN 性能接近 WL test 时,GNN 在 邻居节点聚合 和 图读出 操作函数的条件 发现流行的 GNN 变体,如 GCN/GraphSAGE 等,不能够区分简单的图结构,并且精确地总结了他们能够区分的图结构 提出了一种简单的神经网络结构,图同构网络(Graph Isomorphism Network, GI ...
Detecting Poisoning Attacks on Machine Learning in IoT Environments
Created2022-08-03|papersabstract
Detecting Poisoning Attacks on Machine Learning in IoT Environments abstract。 Architecture 具体贡献有: 一个新型算法检测和过滤污染数据 两个基于溯源信息的变体防御:部分可信和完全不可信 evaluation 部分可信的防御方法 Defences for Partially Trusted Data 具体输入如下: 一个有监督机器学习算法 为了训练机器学习算法采集的数据集,包含可信和不可信两部分 一个安全可信的溯源数据集,描述不可信部分中每个数据点的溯源和沿袭的源数据组成 溯源特征,表征污染数据如何聚集在数据集的不可信部分中 给定以上输入后,具体方法如上图所示。 全部不可信的防御方法 Defences for Fully Untrusted Data 存在一些场景下无法确认数据是否可信,为了将本方法应用到非可信数据集上,提出以下步骤: 根据选择的溯源特征分段 对于每个段,随机将一部分数据分配给训练集,将其余数据分配给评估集。 对于每个所选特征中的签名: 训练两个模型,一个包含所有训 ...
12…12
avatar
odymit
Reading, thinking and writing.
Articles
113
Tags
82
Categories
14
Follow Me
Announcement
Peace and love!
Recent Post
Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning2023-09-27
centos volume management2023-09-27
OpenBackdoor: A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks2023-03-16
BACKDOORBOX: A PYTHON TOOLBOX FOR BACKDOOR LEARNIN2023-03-13
BackdoorBench: A Comprehensive Benchmark of Backdoor Learning2023-03-12
Categories
  • papers82
    • abstract79
    • innovation1
    • survey2
  • readings22
    • bug analysis21
    • dynamic taint analysis1
  • techniques5
Tags
AI Survey 自然语言处理 运维 信息提取 Federated Learning tools AI Backdoor Attacks 人工智能 centos toolbox 数据投毒检测 robustness AI安全 攻击模拟 Poisoning Defences assessment 数据压缩 意图识别 mitre-attack 溯源图 聚类算法 ATT&CK Mysql CALDERA Graph Classification 图卷积神经网络 CAR 日志分析 reinforcement learning 威胁情报 溯源采集工具 异常值检测 项目管理 git Vue 日志近似方法验证 backdoor 代码审计 图
Archives
  • September 20232
  • March 20235
  • August 20223
  • July 20225
  • June 20226
  • May 20226
  • April 202239
  • March 20227
Info
Article :
113
UV :
PV :
Last Update :
©2020 - 2023 By odymit
Framework Hexo|Theme Butterfly
Search
Loading the Database